Deepfake Detection Examples
Basic Detection
import torch
from mukh.deepfake_detection import DeepfakeDetector
detector = DeepfakeDetector(
model_name="resnet_inception", # Options: "resnet_inception", "efficientnet"
confidence_threshold=0.5,
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
)
detections, final_result = detector.detect(
media_path="assets/images/img1.jpg",
save_csv=True,
csv_path="output/resnet_inception/deepfake_detections.csv",
save_annotated=True,
output_folder="output/resnet_inception",
num_frames=11 # For video analysis
)
print(f"Deepfake: {final_result}")
Available Models
resnet_inception
efficientnet
Parameters
confidence_threshold
: Detection confidence threshold (0.0 to 1.0)
num_frames
: Number of frames to analyze for videos
media_path
: Path to image or video file
num_frames
: Number of frames to analyze in the video